The Influence of AI Marketing Technology on Online Purchasing Decisions of Household Consumers in Thailand

  • นิเวศน์ ธรรมะ ฝ่ายหลักสูตรโครงการพิเศษ โครงการบริหารธุรกิจมหาบัณฑิต มหาวิทยาลัยรามคำแหง
  • วันเพ็ญ อนิวรรตนพงศ์, รศ. Ramkhamhaeng University
  • วิไลวรรณ ทองประยูร, รศ. Ramkhamhaeng University
  • ประไพทิพย์ ลือพงษ์, ผศ.ดร. Ramkhamhaeng University
  • เมธาวี อนิวรรตนพงศ์, ดร. Ramkhamhaeng University
Keywords: Artificial Intelligence, Technology in E-Commerce, AI Shopping Experience, Online Purchasing Decision

Abstract

In e-commerce, artificial intelligence alters the nature of online retail. Very little research has been conducted in Thailand on the impact of artificial intelligence (AI) on household consumer purchasing decisions. The Technology Acceptance Model (TAM) is the primary theory used to describe the research framework, which consists of five model variables. There are shopping experiences of AI marketing on online platforms, perceived usefulness of AI marketing technology on online platforms, perceived ease of use of AI marketing technology on online platforms, consumer intent to buy online on online platforms, and decision-making on online platforms with AI marketing technology. This research aims to examine the impact of AI marketing technology on the online purchasing decisions of Thai consumers. The research contributes to formulating a more effective digital marketing strategy by surveying 300 individuals who have shopped online on platforms with AI marketing technology and analyzing their responses with structural equation modeling. The analysis results indicate that consumers' online purchase decisions are directly influenced by their online purchase intentions. Online shopping experience with AI marketing technology, perceived usefulness of AI marketing technology, and perceived ease of use of AI marketing technology have statistically significant indirect effects on consumers' decisions to purchase online products on online platforms with statistical significance at the 0.01 level.

References

กองบรรณาธิการ TCIJ. (2564, 26 กรกฎาคม). ผลสำรวจคนไทยมีอัตราช็อปปิ้งออนไลน์สูงที่สุดในโลกในช่วง COVID-19. TCIJ. สืบค้นจาก https://www.tcijthai.com/news/2021/19/scoop/11763

นงลักษณ์ วิรัชชัย. (2542). โมเดลสิสเรล: สถิติวิเคราะห์สำหรับการวิจัย (พิมพ์ครั้งที่ 3). กรุงเทพฯ: โรงพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.

Aldayel, M., Ykhlef, M., & Nafjan, A. A. (2020). Deep Learning for EEG-Based Preference Classification in Neuromarketing. Applied Sciences, 10(4), 15-25. https://doi.org/10.3390/app10041525

Almajali, D. A., & Hammouri, Q. (2021). Predictors of Online Shopping During Covid-19 Pandemic in Developing Country: Qualitative Analysis. Annals of R.S.C.B, 25(6), 12970-12977.

André, Q., Carmon, Z. Z., Wertenbroch, K., Crum, A., Frank, D., Goldstein, W., . . . Yang, H. (2018). Consumer Choice and Autonomy in the Age of Artificial Intelligence and Big Data. Customer Needs and Solutions, 5, 28–37. https://doi.org/10.1007/s40547-017-0085-8

Bader, V., & Kaiser, S. (2019). Algorithmic decision-making? The user interface and its role for human involvement in decisions supported by artificial intelligence. Organization, 26(5), 655-672. https://doi.org/10.1177/1350508419855714

Bosze, A. (2021). What is E-Commerce? Definition, differences with other terms. Retrieved from https://www.doofinder.com/en/blog/what-is-e-commerce

Brei, V. A. (2020). Machine Learning in Marketing: Overview, Learning Strategies, Applications, and Future Developments. Foundations and Trends® in Marketing, 14(3), 173-236. http://dx.doi.org/10.1561/1700000065

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, 283-314. doi:10.1016/j.jbusres.2020.08.019

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Eriksson, T., Bigi, A., & Bonera, M. (2020). Think with me, or think for me? On the future role of artificial intelligence in marketing strategy formulation. The TQM Journal, 32(4), 24–38.

Fedorko, R., Krá, Š., & Bačík, R. (2021). Artificial Intelligence in E-commerce Literature Review. In Congress on Intelligent Systems, Proceedings of CIS 2021 (pp. 677-689). doi:10.1007/978-981-16-9113-3_50

Ganapathi, R. (2015). A study on factors affecting online shopping behavior of consumers in Chennai. Journal of Management Research and Analysis, 2(2), 123-126.

Giroux, M., Kim, J., Lee, J. C., & Park, J. (2022). Artificial Intelligence and Declined Guilt: Retailing Morality Comparison Between Human and AI. Journal of Business Ethics volume, 178(1), 1027–1041. https://doi.org/10.1007/s10551-022-05056-7

Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925

Hair, J. F., & Sarstedt, M. (2020). Data, measurement, and causal inferences in machine learning: Opportunities and challenges for marketing. The Journal of Marketing Theory and Practice, 29(1), 65-77. doi:10.1080/10696679.2020.1860683

Jain, V., Malviya, B., & Arya, S. (2021). An Overview of Electronic Commerce (e-Commerce). Journal of Contemporary Issues in Business and Government, 27(3), 665-670. doi:10.47750/cibg.2021.27.03.090

Khrais, L. T. (2020). Role of Artificial Intelligence in Shaping Consumer Demand in E-Commerce. Future Internet, 12(12), 226. https://doi.org/10.3390/fi12120226

Kim, T. Y., Dekker, R., & Heij, C. (2017). Cross-Border Electronic Commerce: Distance Effects and Express Delivery in European Union Markets. International Journal of Electronic Commerce, 21(2), 184–218. doi:10.1080/10864415.2016.1234283

Koufaris, M. (2002). Applying the Technology Acceptance Model and Flow Theory to Online Consumer Behavior. Information Systems Research, 13(2), 205–223. Retrieved from http://www.jstor.org/stable/23011056

Laudon, K. C., & Traver., C. G. (2021). E-Commerce 2020–2021: Business, Technology and Society (16th ed.). London, England: Pearson Education Limited.

Libai, B., Gensler, S., Kaplan, A., Kötterheinrich, K., & Kroll, E. B. (2020). Brave New World? On AI and the Management of Customer Relationships. Journal of Interactive Marketing, 51(1), 44–56. https://doi.org/10.1016/j.intmar.2020.04.0

Makarenko, E. (2022). Artificial intelligence (AI) in eCommerce: Statistics & Facts, Use Cases, and Benefits. Retrieved from https://masterofcode.com/blog/state-of-artificial-intelligence-ai-in-ecommerce-statistics-and-deployment

McKinsey & Company. (2020). The state of AI in 2020. Retrieved from https://www.mckinsey.com/ capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2020

Micu, A., Micu, A. E., Geru, M., Căpățînă, A., & Muntean, M. C. (2021). The Impact of Artificial Intelligence Use on the E-Commerce in Romania. Amfiteatru Economic, 23(56), 137-154. doi:10.24818/EA/2021/56/137

Na, S., Heo, S., Han, S., Shin, Y., & Roh, Y. (2022). Acceptance Model of Artificial Intelligence (AI)-Based Technologies in Construction Firms: Applying the Technology Acceptance Model (TAM) in Combination with the Technology–Organisation–Environment (TOE) Framework. Buildings, 12(2), 90. https://doi.org/10.3390/buildings12020090

Nisar, T. M., & Prabhakarb, G. (2017). What factors determine e-satisfaction and consumer spending in e-commerce retailing? Journal of Retailing and Consumer Services, 39, 135-144. https://doi.org/10.1016/j.jretconser.2017.07.010

Pawłowski, M. (2021). Machine Learning Based Product Classification for eCommerce. Journal of Computer Information Systems, 62(4), 1-10. doi:10.1080/08874417.2021.1910880

Prateepsawangwong, N., & Luo, C. (2018). E-Commerce in Thailand: A Guide for Australian Business. Retrieved from https://www.readkong.com/page/e-commerce-in-thailand-a-guide-for-australian-business-8084613

Radner, R., & Rothschild, M. (1975). On the allocation of effort. Journal of Economic Theory, 10(3), 358-376. https://doi.org/10.1016/0022-0531(75)90006-X

Rimol, M. (2022). Gartner Predicts Conversational AI Will Reduce Contact Center Agent Labor Costs by $80 Billion in 2026. Retrieved from https://www.gartner.com/en/newsroom/press-releases/2022-08-31-gartner-predicts-conversational-ai-will-reduce-contac

Shin, D. H. (2010). Modeling the Interaction of Users and Mobile Payment System: Conceptual Framework. International Journal of Human–Computer Interaction, 26(10), 917-940. https://doi.org/10.1080/10447318.2010.502098

Shiohira, K. (2021). Understanding the impact of artificial intelligence on skills development. Germany: UNESCO-UNEVOC.

Song, X., Yang, S., Huang, Z., & Huang, T. (2019). The Application of Artificial Intelligence in Electronic Commerce. Journal of Physics: Conference Series, 1302(3), 032030. doi:10.1088/1742-6596/1302/3/032030

Statista. (2021). Thailand use of artificial intelligence among e commerce enterprises. Retrieved from https://www.statista.com/statistics/1012415/thailand-use-of-artificial-intelligence-among-e-commerce-enterprises/

Tunpaiboon, N. (2022). แนวโน้มธุรกิจ/อุตสาหกรรมปี 2566-2568: ธุรกิจร้านค้าปลีกสมัยใหม่. Retrieved from https://www.krungsri.com/th/research/industry/industry-outlook/wholesale-retail/modern-trade/io/modern-trade-2022

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

We Are Social. (2021). รายงานข้อมูลสถิติออนไลน์ของคนไทย Thailand Digital Stat 2021. Retrieved from https://www.slideshare.net/DataReportal/digital-2021-thailand-january-2021-v01

Published
2023-02-28